A motherboard is the central printed circuit board (PCB) in many modern computers, and holds many of the crucial components of the system, while providing connectors for other peripherals. The motherboard is sometimes alternatively known as the main board, system board, or, on Apple computers, the logic board.[1] It is also sometimes casually shortened to mobo.[2]
Contents [hide]
1 History
2 Overview
2.1 CPU sockets
2.2 Integrated peripherals
2.3 Peripheral card slots
2.4 Temperature and reliability
2.5 Form factor
2.6 Nvidia SLI and ATI Crossfire
3 Bootstrapping using the BIOS
4 See also
5 References
6 External links
[edit] History
Prior to the advent of the microprocessor, a computer was usually built in a card-cage case or mainframe with components connected by a backplane consisting of a set of slots themselves connected with wires; in very old designs the wires were discrete connections between card connector pins, but printed-circuit boards soon became the standard practice. The central processing unit, memory and peripherals were housed on individual printed circuit boards which plugged into the backplane.
During the late 1980s and 1990s, it became economical to move an increasing number of peripheral functions onto the motherboard (see below). In the late 1980s, motherboards began to include single ICs (called Super I/O chips) capable of supporting a set of low-speed peripherals: keyboard, mouse, floppy disk drive, serial ports, and parallel ports. As of the late 1990s, many personal computer motherboards supported a full range of audio, video, storage, and networking functions without the need for any expansion cards at all; higher-end systems for 3D gaming and computer graphics typically retained only the graphics card as a separate component.
The early pioneers of motherboard manufacturing were Micronics, Mylex, AMI, DTK, Hauppauge, Orchid Technology, Elitegroup, DFI, and a number of Taiwan-based manufacturers.
Popular personal computers such as the Apple II and IBM PC had published schematic diagrams and other documentation which permitted rapid reverse-engineering and third-party replacement motherboards. Usually intended for building new computers compatible with the exemplars, many motherboards offered additional performance or other features and were used to upgrade the manufacturer's original equipment.
The term mainboard is archaically applied to devices with a single board and no additional expansions or capability. In modern terms this would include embedded systems, and controlling boards in televisions, washing machines etc. A motherboard specifically refers to a printed circuit with the capability to add/extend its performance/capabilities with the addition of "daughterboards".
[edit] Overview
An Acer E360 motherboard made by Foxconn, from 2005, with a large number of integrated peripherals. This board's nForce3 chipset lacks a traditional northbridge.Most computer motherboards produced today are designed for IBM-compatible computers, which currently account for around 90% of global PC sales[citation needed]. A motherboard, like a backplane, provides the electrical connections by which the other components of the system communicate, but unlike a backplane, it also hosts the central processing unit, and other subsystems and devices.
Motherboards are also used in many other electronics devices such as mobile phones, stop-watches, clocks, and other small electronic devices.
A typical desktop computer has its microprocessor, main memory, and other essential components on the motherboard. Other components such as external storage, controllers for video display and sound, and peripheral devices may be attached to the motherboard as plug-in cards or via cables, although in modern computers it is increasingly common to integrate some of these peripherals into the motherboard itself.
An important component of a motherboard is the microprocessor's supporting chipset, which provides the supporting interfaces between the CPU and the various buses and external components. This chipset determines, to an extent, the features and capabilities of the motherboard.
Modern motherboards include, at a minimum:
sockets (or slots) in which one or more microprocessors are installed[3]
slots into which the system's main memory is installed (typically in the form of DIMM modules containing DRAM chips)
a chipset which forms an interface between the CPU's front-side bus, main memory, and peripheral buses
non-volatile memory chips (usually Flash ROM in modern motherboards) containing the system's firmware or BIOS
a clock generator which produces the system clock signal to synchronize the various components
slots for expansion cards (these interface to the system via the buses supported by the chipset)
power connectors flickers, which receive electrical power from the computer power supply and distribute it to the CPU, chipset, main memory, and expansion cards.[4]
The Octek Jaguar V motherboard from 1993.[5] This board has 6 ISA slots but few onboard peripherals, as evidenced by the lack of external connectors.Additionally, nearly all motherboards include logic and connectors to support commonly-used input devices, such as PS/2 connectors for a mouse and keyboard. Early personal computers such as the Apple II or IBM PC included only this minimal peripheral support on the motherboard. Occasionally video interface hardware was also integrated into the motherboard; for example on the Apple II, and rarely on IBM-compatible computers such as the IBM PC Jr. Additional peripherals such as disk controllers and serial ports were provided as expansion cards.
Given the high thermal design power of high-speed computer CPUs and components, modern motherboards nearly always include heat sinks and mounting points for fans to dissipate excess heat.
[edit] CPU sockets
Main article: CPU socket
A CPU socket or CPU slot is an electrical component that attaches to a printed circuit board (PCB) and is designed to house a CPU (also called a microprocessor). It is a special type of integrated circuit socket designed for very high pin counts. A CPU socket provides many functions, including providing a physical structure to support the CPU, providing support for a heat sink, facilitating replacement (as well as reducing cost) and most importantly forming an electrical interface both with the CPU and the PCB. CPU sockets can most often be found in most desktop and server computers (laptops typically use surface mount CPUs), particularly those based on the Intel x86 architecture on the motherboard.
[edit] Integrated peripherals
Block diagram of a modern motherboard, which supports many on-board peripheral functions as well as several expansion slots.With the steadily declining costs and size of integrated circuits, it is now possible to include support for many peripherals on the motherboard. By combining many functions on one PCB, the physical size and total cost of the system may be reduced; highly-integrated motherboards are thus especially popular in small form factor and budget computers.
For example, the ECS RS485M-M,[6] a typical modern budget motherboard for computers based on AMD processors, has on-board support for a very large range of peripherals:
disk controllers for a floppy disk drive, up to 2 PATA drives, and up to 6 SATA drives (including RAID 0/1 support)
integrated ATI Radeon graphics controller supporting 2D and 3D graphics, with VGA and TV output
integrated sound card supporting 8-channel (7.1) audio and S/PDIF output
Fast Ethernet network controller for 10/100 Mbit networking
USB 2.0 controller supporting up to 12 USB ports
IrDA controller for infrared data communication (e.g. with an IrDA enabled Cellular Phone or Printer)
temperature, voltage, and fan-speed sensors that allow software to monitor the health of computer components
Expansion cards to support all of these functions would have cost hundreds of dollars even a decade ago, however as of April 2007[update] such highly-integrated motherboards are available for as little as $30 in the USA.
[edit] Peripheral card slots
A typical motherboard of 2009 will have a different number of connections depending on its standard.
A standard ATX motherboard will typically have: - 1x PCI-E 16x connection for a graphics card. - 2x PCI slots for various expansion cards. - 1x PCI-E 1x (which will eventually supersede PCI). A standard Super ATX motherboard will have: - 1x PCI-E 16x connection for a graphics card. - a varying number of PCI and PCI-E 1x slots. - It can sometimes also have a PCI-E 4x slot (This varies between brands and models).
Some motherboards have 2x PCI-E 16x slots, to allow more than 2 monitors without special hardware or to allow use of a special graphics technology called SLI (for Nvidia) and Crossfire (for ATI). These allow 2 graphics cards to be linked together, to allow better performance in intensive graphical computing tasks, such as gaming and video-editing.
As of 2007[update], virtually all motherboards come with at least 4x USB ports on the rear, with at least 2 connections on the board internally for wiring additional front ports that are built into the computer's case. Ethernet is also included now. This is a standard networking cable for connecting the computer to a network or a modem. A sound chip is always included on the motherboard, to allow sound to be output without the need for any extra components. This allows computers to be far more multimedia-based than before. Cheaper machines now often have their graphics chip built into the motherboard rather than a separate card.
[edit] Temperature and reliability
Motherboards are generally air cooled with heat sinks often mounted on larger chips, such as the northbridge, in modern motherboards. If the motherboard is not cooled properly, it can cause the computer to crash. Passive cooling, or a single fan mounted on the power supply, was sufficient for many desktop computer CPUs until the late 1990s; since then, most have required CPU fans mounted on their heat sinks, due to rising clock speeds and power consumption. Most motherboards have connectors for additional case fans as well. Newer motherboards have integrated temperature sensors to detect motherboard and CPU temperatures, and controllable fan connectors which the BIOS or operating system can use to regulate fan speed. Some higher-powered computers (which typically have high-performance processors and large amounts of RAM, as well as high-performance video cards) use a water-cooling system instead of many fans.
Some small form factor computers and home theater PCs designed for quiet and energy-efficient operation boast fan-less designs. This typically requires the use of a low-power CPU, as well as careful layout of the motherboard and other components to allow for heat sink placement.
A 2003 study[7] found that some spurious computer crashes and general reliability issues, ranging from screen image distortions to I/O read/write errors, can be attributed not to software or peripheral hardware but to aging capacitors on PC motherboards. Ultimately this was shown to be the result of a faulty electrolyte formulation.[8]
For more information on premature capacitor failure on PC motherboards, see capacitor plague.
Motherboards use electrolytic capacitors to filter the DC power distributed around the board. These capacitors age at a temperature-dependent rate, as their water based electrolytes slowly evaporate. This can lead to loss of capacitance and subsequent motherboard malfunctions due to voltage instabilities. While most capacitors are rated for 2000 hours of operation at 105 °C,[9] their expected design life roughly doubles for every 10 °C below this. At 45 °C a lifetime of 15 years can be expected. This appears reasonable for a computer motherboard, however many manufacturers have delivered substandard capacitors,[citation needed] which significantly reduce life expectancy. Inadequate case cooling and elevated temperatures easily exacerbate this problem. It is possible, but tedious and time-consuming, to find and replace failed capacitors on PC motherboards; it is less expensive to buy a new motherboard than to pay for such a repair.[citation needed]
[edit] Form factor
Main article: Comparison of computer form factors
microATX form factor motherboardMotherboards are produced in a variety of sizes and shapes ("form factors"), some of which are specific to individual computer manufacturers. However, the motherboards used in IBM-compatible commodity computers have been standardized to fit various case sizes. As of 2007[update], most desktop computer motherboards use one of these standard form factors—even those found in Macintosh and Sun computers which have not traditionally been built from commodity components.
Laptop computers generally use highly integrated, miniaturized, and customized motherboards. This is one of the reasons that laptop computers are difficult to upgrade and expensive to repair. Often the failure of one laptop component requires the replacement of the entire motherboard, which is usually more expensive than a desktop motherboard due to the large number of integrated components.
[edit] Nvidia SLI and ATI Crossfire
Nvidia SLI and ATI Crossfire technology allows two or more of the same series graphics cards to be linked together to allow faster graphics-processing capabilities. Almost all medium- to high-end Nvidia cards and most high-end ATI cards support the technology.
They both require compatible motherboards. There is an obvious need for 2x PCI-E 16x slots to allow two cards to be inserted into the computer. The same function can be achieved in 650i motherboards by NVIDIA, with a pair of x8 slots. Originally, tri-Crossfire was achieved at 8x speeds with two 16x slots and one 8x slot; albeit at a slower speed. ATI opened the technology up to Intel in 2006, and all new Intel chipsets now support Crossfire.
SLI is a little more proprietary in its needs. It requires a motherboard with Nvidia's own NForce chipset series to allow it to run (exception: select Intel X58 and P55 chipset based motherboards).
It is important to note that SLI and Crossfire will not usually scale to 2x the performance of a single card when using a dual setup. They also do not double the effective amount of VRAM or memory bandwidth.
[edit] Bootstrapping using the BIOS
Main article: booting
Motherboards contain some non-volatile memory to initialize the system and load an operating system from some external peripheral device. Microcomputers such as the Apple II and IBM PC used ROM chips, mounted in sockets on the motherboard. At power-up, the central processor would load its program counter with the address of the boot ROM, and start executing ROM instructions, displaying system information on the screen and running memory checks, which would in turn start loading memory from an external or peripheral device (disk drive). If none is available, then the computer can perform tasks from other memory stores or display an error message, depending on the model and design of the computer and version of the BIOS.
Most modern motherboard designs use a BIOS, stored in an EEPROM chip soldered to the motherboard, to bootstrap the motherboard. (Socketed BIOS chips are widely used, also.) By booting the motherboard, the memory, circuitry, and peripherals are tested and configured. This process is known as a computer Power-On Self Test (POST) and may include testing some of the following devices:
ass ...
Senin, 09 November 2009
Langganan:
Posting Komentar (Atom)
Tidak ada komentar:
Posting Komentar